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Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznari, Poland 

Received 21 July 1986 

Abstract. A renormalisation group method for one-dimensional iterated maps displaying 
period doublings is studied. The renormalisation transformation involves variable rescaling, 
similar to the doubling transformation of Feigenbaum, but is defined on the space of 
parameters of a given mapping. Numerical calculations are carried out for maps with 
different analytic dependence near the extremum. 

1. Introduction 

The connection between the universality of metric properties of iterated one- 
dimensional maps exhibiting period doubling bifurcations and the renormalisation 
group (RG) scheme has originally been shown by Feigenbaum (1978, 1979). Besides 
the numerical and analytical renormalisation treatment of Feigenbaum, there are also 
other RG methods, both for one-dimensional (Derrida er a1 1979, Hu and Mao 1982, 
Hauser et a1 1984) and for higher-dimensional dissipative (Helleman 1980, Feigenbaum 
et a1 1982) and conservative (Helleman 1980, Derrida and Pomeau 1980, Widom and 
Kadanoff 1982, Jansen and Tjon 1983) maps. Generally these RG procedures can be 
applied to those non-linear mappings which reveal chaotic behaviour and display 
universal scaling properties at the onset of chaos. 

The renormalisation transformation (RT) presented in this paper is defined on the 
space of parameters of a particular function, contrary to the Feigenbaum method in 
which the RG flow is considered in a space of functions (see Collet and Eckmann 1980, 
Eckmann 1984). The idea of examining the RG flow in the space of parameters of a 
given map has already been used by Derrida et a1 (1979). However, the construction 
of RT described here differs essentially from that applied in their approach. The main 
difference is that our procedure involves explicitly the rescaling of the variable and 
does not require the existence of any pointwise homeomorphism. 

2. The renormalisation group procedure 

Consider the following family of mappings of the real axis: 
g, : x + x’ = g({ a ( i ) ( A ) } ,  x)  

with 
I 

g ( { a ( i ) ( A ) } ,  x)  = 1 - a ( i ’ ( h ) l x ) z i  
i = l  
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(2.2) 

3251 



3252 W Jeiewski 

where z ER, z > 1, and each of the elements of the set of coefficients a'"(A ), i = 
1,2, . . . , 1, is a differentiable function of a non-linearity parameter A. The functions 
g,(x) are symmetric and they will all be assumed to possess a unique maximum at 
x = 0. Let us also assume that the maps g, exhibit infinite cascades of period doubling 
bifurcations as the parameter A increases to the critical value A,. Here, we restrict 
our attention to bifurcation sequences corresponding to R*" MSS sequences (Metropolis 
et a1 1973, Collet and Eckmann 1980) and representing superstable periods. Since the 
universal metric properties of iterated maps have a local character (Feigenbaum 1978, 
1979), the RG analysis of the universality in the behaviour of non-linear maps can be 
carried out only in a local manner. Below, we consider two versions of a RG method, 
the first for x = 0 (the centred renormalisation) and the second for x = xo, where xo is 
a non-zero point to be determined (the non-centred renormalisation). 

2.1. Centred renormalisation 

Define for a given set of coefficients {a'')(A)} the functions 

(2.3) 

with n, p ,  r = 0, 1,2, . . . , g""' being the 2"-fold functional composition (g  0 g 0 . . . 0 g 
(2" times)), and a denoting the universal rescaling factor determined by the condition 
limn,p,r+m gn,p,r(0) = 1. The coefficients U : ) ( A ~ + ~ + ~ ) ,  i = 1,2 , .  . . , I ,  are effective para- 
meters (after 2p compositions), i.e. 

ab"(Ar)  = a ( ' ) ( A r )  i = 1,2, . . . , 1 
(2.4) 

where A, is the value of A at which the 2'-point superstable limit cycle (i.e. the set 
{ Z j } ,  j = 1,2, .  . . ,2', such that g!,t"(Xj) = Zj and (d/dZj)gF')(Zj) = 0) occurs. Since the 
functional composition generates new terms in the functions gn,p,r( x), it follows that, 
in general, gn+l,p,r(x) # gn,p+l,r(X). 

Using equation (2.3) we construct a RT, which consists of the following four steps. 
( I )  Start at A = A n + p + r + l  and look at gn,p,r+l(x) near x = 0. 
(11) Form the functional composition: 

(2 )  g n,p,r+ I (x)  = gn, p,r+l(gn, p,r+ I (x)  ) *  

(111) Rescale: 

gjttL,r+l(x) + -agjlfb,r+l(x/a) = gn+l,p.r(x). 

(IV) Change the coefficients: 

gn+ I ,  p,r(x) + g n +  1, p-  l , r  

T m i n ,  p,r+ 1 (x)  = i n +  1, p -  1 . r  

Thus, our RT can be written in the form 

( 2 . 5 )  

(2.6) 

The essence of the transformation T, may be explained as follows. The starting 
function gn,p,r+l(x) is associated with A = A n + p + r + l  and displays a superstable cycle of 

i n  + 1, p - I .r  (XI  = - sin, p,r+ 1 ( i n ,  p,r+ 1 (x/  a ) ) * 
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period 2'+'. This function is converted by operations I1 and I11 into a new function 
with A of the same value, but having a superstable cycle of period 2'. The operation 
IV decreases A from A n + p + r + ,  to preserving the period of the superstable orbit. 
Thus, Tu transforms the initial function which displays a superstable 2'+l cycle at 
A n + p + r + ,  into a similar function which has a superstable 2' cycle at A n + p + r .  Con- 
sequently, equation (2.6) is recursively unstable. It is to be noted that the operation 
IV is not an identity transformation, provided that p remains finite. Accordingly, we 
denote the renormalised coefficients of the functions & p , r ( x )  by ~ f , b ( A , , + ~ + , )  with 
n > 0 and i = 1 , 2 , .  . . , I ,  where I ,  > I ( I ,  = CO for all n > 0 when z is non-integer). In 
principle, Tu has the form of the doubling transformation (Feigenbaum 1979). 
However, according to the conventional formulation, the doubling transformation does 
not involve step IV, i.e. it leaves the parameter A unchanged. The reason for introducing 
the operation IV is to simplify our analysis of the RG flow near the fixed point. 

It should be pointed out that the operator Tu acts on a function space. However, 
elements of limit cycles associated with the renormalised functions & p , r ( ~ )  are deter- 
mined only by the coefficients ~(n ' , , b (A , ,+~+ , ) .  Therefore, the RG analysis of the universal 
properties of g,  at the onset of chaos can be carried out within a space of the coefficients 
of & , p , , ( x ) .  We notice that, for non-integer z and n > 0, the functions d n , p , r ( ~ )  involve 
infinitely many parameters, as in such a case the functional composition of any reduced 
function (2.2) (with finite I )  generates infinitely many higher-order terms ( I ,  = CO). 

However, for integer z and all finite n, each of the renormalised functions & , p , r ( x )  
involves a finite number of parameters (if I is finite), although Tu generates new 
higher-order terms. (Note that I ,  +CO as n -$ CO.) Thus, in this case the dimension of 
the parameter space is not invariant under Tu. Obviously, one can expect that, for 
asymptoptically large n, p ,  and r, & p , r ( ~ )  are good approximations, even for finite l,, 
to the limit function l i m ,  p,r+m g,,p,r (x )  which involves infinitely many parameters (cf 
Feigenbaum 1979). In any case, we can restrict concrete calculations to the parameter 
space of a finite dimension. This is fairly justified, since the transformation Tu is 
determined locally near x = 0, and the renormalised functions & p , r ( ~ )  should also be 
considered in the immediate vicinity of x = 0. 

We assume equations (2.5) and (2.6) to have a fixed point given by 

and by the condition 

g ( 0 )  = 1 .  (2.8) 

g ( x )  = - a g ( g ( x / a ) )  (2.9) 

Then, from (2.6) one obtains 

where g ( x )  is the universal function (see Kawai and Tye 1984). According to (2.8), 
the scaling factor a can be determined by the formula 

a- l=  - g (  1 )  (2.10) 

or equivalently by 
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It is seen from the above definitions and equations (2.5) and (2.6) that the repeated 
application of our RT does not affect the factor a. Consequently, as long as n, p and 
r are finite, the value of g n , p , r ( ~ )  at x=O changes . nder To. It should be noted that 
the relation (2.9) is exactly the equation derived by Feigenbaum and CvitanoviC 
(Feigenbaum 1978) for the infinite attractor. Obviously, the analysis of the behaviour 
of the functions g n , p , r ( ~ )  near g(x) is quite different from the Feigenbaum treatment. 
We remark that a unique analytic solution of the functional equation (2.9) has been 
proven to exist in the case when z = 1 + E  with E taking on small positive values (Collet 
et a1 1980) and in the non-trivial case of z = 2 (see Lariford 1984). In the latter case, 
the proof has a computational character. 

Using (2.6) yields the RG equations for U : , \ ( A ~ + ~ + ~ ) .  These equations can formally 

, 1,. (2.11) 

(2.12) 

(2.13) 

(2.14) 

The deviations ~ ~ i ~ , ~ - ~ ( h ~ + ~ + ~ )  and E ~ , L ( A , + ~ + ~ + ~ )  can be written as linear combina- 
tions of the eigenvectors wk = ( $ V I ,  $?I, . . . , $(kn)), k = 1,2,  . . . , I,, of the matrix M,,. 
Then we have 

(2.15) 

Assuming that Y ! , ? ~ , ~ - ~ ( A ~ + ~ + , )  and -yLtA(An+p+r+l)  are smooth functions of A n + p + r  and 
, and vanish when n, p ,  r = a, one can expand them 

Y n + l , p - l ( A n + p + r )  ( k )  = A J k i i l , p - l ( h n + p + r  - A m ) +  B \ k J l , p - l ( A n + p + r  -Am)’+. * . 
(2.16) 

y!,;A(An+p+,+i) = A‘k’S-l  n . p  n + p + r ( ~ n + p + r  - LJ + BktLSn:p+r(An+p+r - A,)*+. . . 
where the coefficients A and B are independent of A (we assume that all the A are 
non-zero) and 

For asymptotically large n, one has 

(2.17) 

6 n + p + r  = 8 + A n + p + r  (2.18) 
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with 6 = 6,+,+, being the universal bifurcation ratio and A,+,+, + 0 as n + 00. 

It should be noted that the coefficients A diverge if any of the indices n, p,  r remain 
finite while the others tend to infinity, since the fixed-point solution to equation (2.6) 
can exist only if n, p and r are simultaneously infinite. Accordingly, the expansions 
(2.16) make sense only for large n, p ,  r, such that O < p / n  < 00 and O <  r / n  < 00. Then, 
by equations (2.13), (2.15), (2.16) and (2.18) one derives 

n + l , p - l  = Pks-'AL:L (2.19) 

where pk, k = 1,2, .  . . , I,, are the eigenvalues of the matrix M,,  associated with the 
eigenvectors Yk, k = 1,2, . . . , 1,. The 'group' property of the transformation (2.5) 
( TmTmWk = T,2Yk) implies that 

(2.20) 

with yk being independent of a. By calling y ,  the greatest of the exponents yk, and A 
the greatest of the eigenvalues of M,,, one obtains from equations (2.15), (2.16) and 
(2.20) 

(2.21) E ! , + l , p - l ( A n + p + r )  1 1  = a y t 6 Y ~ ~ ( A n + p + r + l ) @ i "  + 0 ( a J 2 ,  A n + p + r )  

A =  ay1S. (2.22) 

where y z  is greater than all the other y,. Thus, we obtain 

Since the RG equations (2.11) are recursively unstable, we have A >  1. It should be 
pointed out that the matrix MI, is not symmetric and its eigenvalues do not have to 
be real. 

It follows from (2.22) that, to calculate the universal constant 6, one has to determine 
the exponent y , .  This can be done as follows. Using (2.6) and (2.13) we find that 

'" 
(2.23) E L + l , p - l ( A n + p + r )  1 )  = & ( 8 ) E : b ( A n + p + r + l )  

J = 1  

where 

L,, (6)  = a M,J({ A,)}) i , j = 1 , 2  , . . . ,  I ,  (2.24) 

is independent of cr. Accordingly, the bifurcation ratio 6 can be expressed as 

S = max {q,} 
I G k s l ,  

with q k  being real roots of the equation 

det(LZ](6)-qSt,J)=0* 

(2.25) 

(2.26) 

Consequently, one obtains 

y , = l - z  y*=1-2z (2.27) 
etc. Thus, all the y ,  are real. By virtue of (2.22), A must be real and positive. 

We note that the greatest eigenvalue of linearised RG equations appearing both in 
the method of Feigenbaum (1979) and the method of Derrida et a1 (1979) does not 
depend on a and is equal to 6. As concerns the former approach, this follows from 
the fact that a resulting linearised RG functional equation is satisfied, after an appropri- 
ate separation, by an eigenvector being exactly the generator of infinitesimal rescaling. 
The latter approach does not involve explicitly the variable rescaling at all. Thus, our 
RG method yields a different procedure of calculating the universal constants. 
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2.2. Non-centred renormalisation 

The RT can also be constructed for x = xo with x o >  0 (Feigenbaum 1978, Derrida et 
a1 1979). In this case one considers the following non-linear functions 

(2.28) 

ad"(Ar) = u ( ~ ' ( A ~ )  i = 1 , 2 ,  . . . , I  
(2.30) 

and x , , ~  > 0 being the position of the maximum of g F b , r ( x ) .  This position is determined 

gn.p .r (xn,p)  = 0. (2.31) 

It is to be noted that, because of the condition (2.31), x , , ~  depends on the parameter 
A. The factor uz, given by 

by 

1 if z = 2 , 4 ,  , 
uz={ - 1  otherwise 

ensures that the functions g n , p , , ( x )  are real for any real value of z. 
The first two steps of the RT for x = x o  are analogous to those introduced for the 

case of centred renormalisation, except that the functions g n , p , r + l ( x )  are considered 
now near x o .  The remaining steps of the non-centred RT are as follows. 

(111) Shift the system of coordinates: 
g n , p , r + l ( X ) - , g F b , , + l ( X n , p + a Z x ) - X n , p ,  ( 2 )  

(IV) Rescale: 
(2 )  

g n , p , r + l ( X n , p + f f = x ) - X n , p  + ~ Z r g ' , T b , ~ + l ( x n , p + ~ , x / ~ = ) - x n , p l  = gn+l ,p . ,+l(X).  
(V) Change the coefficients: 

gn + 1, p , r+  1 ( x )  + gn + 1, p -  1 ,r ( x  ) * 
Thus, in the present case, the RT takes the form 

T m i n ,  p , r +  1 ( x )  = i n +  I ,  p -  I , r  ( X I  

i n  + 1 . p -  1 = 

(2.32) 

(2.33) = [ i", p,r+  1 ( i n ,  p, r+  1 ( X n ,  p + f f J /  a )) - xn, p I. 
The fixed-point solution to equation (2.33) fulfils the relation 

g ( x )  = . ' ~ g ~ g ~ ~ 0 + f f z ~ / ~ ' ~ ~ - ~ 0 3  

g ( 0 )  = 1 

x = xo 

and the conditions 

g ( x 0 )  = 0 
where xo = x m S m .  The scaling factor (Y is determined by 

= 1 -xo  

(2.34) 

(2.35) 
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or equivalently by 
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(2.36) 

According to (2.33), the linearised RG equations have the form 
'" 

E t i  1 , p  - 1 ( A n  + p + r = c ( { ( )* ( A cu) 1 I {a kxO} 9 X O )  E 2 !n ( A n  + p  + r + I ) (2.37 
J = I  

where 

(2.38) 

Thus, in order to find the eigenvalues of the matrix M,,  one has to calculate the 
derivatives akxo.  This can be performed by taking into account the change of ~,,,,,+,(O) 
under the RT. Using (2.31) and (2.33), one can express this change by the relation 

(2.39) 

Then the derivatives akxo can be found by differentiating the above equation with 
respect to aFi (An+p+r+ l ) ,  using (2.37), and taking the limit n, p ,  r + CO. In general, such 
a procedure yields many solutions for each of the derivatives Obviously, the 
appropriate solutions are those for which eigenvalues of M ,  take on the greatest values. 

It is to be noted that, in the case of non-centred renormalisation, the functional 
composition does not change the value of the function g ( x )  at x = 0, i.e. g ( 0 )  = g ( g ( x o ) ) .  
The rescaling which appears in the construction of the non-centred RT (step IV) is due 
only to shifting of the system of coordinates (step 111). Consequently, the greatest of 
the exponents yk is given now by y1 = 0. Thus, in the case of the non-centred RG 

procedure, the greatest eigenvalue of the matrix M,, is 

A = 6. (2.40) 
It must be stressed that the RG approach described in this paper does not involve 

any pointwise homeomorphism, which would enable one to preserve the dimension 
of the parameter space. This is in contrast with the method of Derrida er a1 (1979), 
based on the following conjugacy law gA = h-' 0 g,  0 g,  0 h, where the mapping g is, in 
general, of the form (2.1) and (2.2), and A, a denote parameter sets of the same number 
of elements. As emphasised by Derrida et al, the homeomorphism h cannot, in general, 
be a polynomial or a rational function, and its existence cannot even be proved. In 
practice, this homeomorphism may only be determined approximately, in the form of 
polynomials, and then the conjugacy law is not strictly satisfied. Thus, the RG scheme 
presented here appears to be more coherent than that of Derrida et al. 

One should notice that, in the method of Feigenbaum (1978, 1979), the RG flow 
near the fixed point is analysed in a space of infinitely many times composed functions. 
Consequently, in this approach the renormalised functions have, in principle, the form 
of infinite series, but are defined at A = A,. Recently, the Feigenbaum RG scheme has 
been extended to the non-linearity parameter A away from its accumulation value (Liu 
er a1 1984). 

a x n , p ( ~ n + p + r + l )  dkxo = lim 
n. PJ+= ( A n + p +  r +  

' ( i n ,  p , r + I  (0) - i n ,  p , r + l  ( x ,  p 1 - xn, p ) = i n +  1, p - l , r ( O )  - inti, p -  I , r ( X n +  1, p -  1 ). 

2.3. The surface of criticality 

It is to be noted that, in general, the RT of the form (2.6) (or (2.33)) may have many 
fixed points. In particular, there should always exist non-trivial fixed points for which 
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a(‘)*(h,) = 0, i = 1,2, . . . , I’ with I’ < I n .  Such fixed points correspond to universal 
functions g ( x )  with z ’>  z, where z’ and z are powers determining the behaviour of 
the maxima of g(x)  and gA(x) ,  respectively. For a given fixed point of this type, the 
matrix M y  can have many eigenvalues ( p k l >  1 .  This is connected with the possibility 
of occurring relevant fields (see Niemeijer and van Leeuwen 1976) for which 
UV,), ,(A~+~+,) # 0 ( i  C 1 ’ )  when p < CO and/or r < 00. Clearly, the eigenvalues ( P k (  < 1 are 
related to the RG flow within the critical surface. It is obvious that the critical surface 
is associated with A, = A,(z’). According to equation (2.6) (or (2.33)), this corresponds 
to p = 03 and r = CO. Note that for finite p and/or r equation (2.6) (or (2.33)) describes 
the RG flow in an unstable direction. Taking into account that yk:L(h,+,+,) depend 
on An+,+, only through the coefficients a;,\( the surface of criticality can 
generally be determined by 

y!,!A(Am(z’)) = 0 k s  I‘ 

where k indexes those -yir& which correspond to the successive eigenvalues 1 .  

3. Numerical results 

We restrict ourselves to numerical calculations of the universal constants 6 and a for 
several chosen values of 2. The calculations are performed for approximate renormali- 
sations, keeping lower-order terms with several parameters in the functions g,,,,,(x). 
As an example, we present some details of our procedure for one-parameter approxima- 
tions. In the case of the centred renormalisation and z = 2, we obtain 

n + l , p - l ( A n + p + r )  = 2 ~ - ~ [ ~ n . p ( ~ n + p t r + l ) I ’  ( 1 )  

= [ ~ ( ” * ( h ~ )  - 1 1 - l  

and 

A=2.  

The non-centred renormalisation gives, for z = 2, 

aY!l,p-t(An+p+r) = 4 K 2  Xn.p[a: ’ ;(A n + p +  r +  I ) I’ 
a“’*(A,)x~= 1 

and 

a=(1-xo)- l ’2 .  

The relation (2.39) yields 

(3.1) 

a’(agj!(An+p+r+l)X;,p -Xn,p)  = a ~ ~ l , p - l ( h n + p + r ) X Z n + i , p - l .  (3.2) 

(a/xo)2(dlxo)2+[4a -a’(a - 1)]a ,xo- (a2-3)X~=0.  

Next, differentiating equation (3.2) and using (3.1), one derives 

Finally, on linearising equation (3.1), the greatest eigenvalue is found to be 

A = 6 = 4.414 214. 

It should be noted that, within analogous approximations, our method leads to the 
same fixed-point solutions of the RG equations, and thereby to the same values for a 
(in the case of centred renormalisation) as the procedure described by Derrida er a1 
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( 1979). Obviously, this does not concern the so-called 'equality-of-slopes' RG procedure 
also developed by these authors. As regards the calculation of 6, our method gives 
generally better results than those given by Derrida et al. The detailed results which 
we have obtained for z = 2 and z = 4 are shown in table 1. To examine more reliably 
the efficiency of our method, we have applied the one-parameter approximation to 
cases of other values of z (see table 2). The values given in tables 1 and 2 appear to 
suggest that for large z the non-centred renormalisation is more accurate than the 
centred one. It should be noted, however, that the calculations carried out by means 

Table 1. Values of the universal constants obtained by using the RG method for the set of 
R*" sequences. The errors are calculated in relation to exact (numerical) values (see 
Feigenbaum 1978, Hu and Satija 1983). 

RG procedure Error Error 
2 4 6 in S (YO) a in a (YO) 

2 Centred renormalisation 
1 5.464 102 17.0 2.732 051 9.2 
2 4.892 837 4.8 2.534 030 1.2 
3 4.631 825 0.8 2.478 909 1 .o 
Non-centred renormalisation 
1 4.414 214 5.5 2.414214 3.5 
2 4.721 514 1.1 2.514 239 0.5 

4 Centred renormalisation 
1 12.359 467 69.5 1.835 087 8.6 
2 9.826 797 34.8 1.732 354 2.5 
3 9.291 572 27.5 1.737 977 2.8 

Non-centred renormalisation 
1 6.989 756 4.0 1.663 252 1.6 
2 7.552 850 3.7 1.701 412 0.6 

Table 2. Universal constants obtained within the one-parameter approximation. The 
relative errors are calculated using exact values given by Derrida et a1 (1979) and Hu and 
Satija (1983). 

Error Error 
i RG procedure 6 in S (YO) a in a (YO) 

Centred renormalisation 
1.1 2.468 336 12.9 8.198 668 2.4 
1.5 3.821 640 0.6 3.651 233 7.7 
3 5.675 860 6.7 1.684 616 12.6 
6 19.610 989 111 1.578 534 7.5 
8 19.835 336 81 1.387 855 2.8 

Non-centred renormalisation 
1.1 2.780 540 1.9 7.805 402 2.6 
1.5 4.100921 7.9 3.263 240 3.7 
3 6.312 569 3.7 1.879 385 2.5 
6 9.3 10 987 0.01 1.462 197 0.4 
8 13.650018 24 1.362 879 0.9 
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of the non-centred procedure are much more involved. It is also remarkable that for 
growing z the accuracy of calculations decreases and the convergence of results obtained 
in successive approximations becomes slower. Finally, we remark that our method 
can easily be extended to m-furcation sequences with m = 3 , 4 , ,  . . . 
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